Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems.
نویسندگان
چکیده
Spatial self-organization is the main theoretical explanation for the global occurrence of regular or otherwise coherent spatial patterns in ecosystems. Using mussel beds as a model ecosystem, we provide an experimental demonstration of spatial self-organization. Under homogeneous laboratory conditions, mussels developed regular patterns, similar to those in the field. An individual-based model derived from our experiments showed that interactions between individuals explained the observed patterns. Furthermore, a field study showed that pattern formation affected ecosystem-level processes in terms of improved growth and resistance to wave action. Our results imply that spatial self-organization is an important determinant of the structure and functioning of ecosystems, and it needs to be considered in their conservation.
منابع مشابه
Supporting Online Material for Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems
متن کامل
Alternative mechanisms alter the emergent properties of self-organization in mussel beds
Theoretical models predict that spatial self-organization can have important, unexpected implications by affecting the functioning of ecosystems in terms of resilience and productivity. Whether and how these emergent effects depend on specific formulations of the underlying mechanisms are questions that are often ignored. Here, we compare two alternative models of regular spatial pattern format...
متن کاملScale-dependent feedback and regular spatial patterns in young mussel beds.
In the past decade, theoretical ecologists have emphasized that local interactions between predators and prey may invoke emergent spatial patterning at larger spatial scales. However, empirical evidence for the occurrence of emergent spatial patterning is scarce, which questions the relevance of the proposed mechanisms to ecological theory. We report on regular spatial patterns in young mussel ...
متن کاملBehavioral self-organization underlies the resilience of a coastal ecosystem.
Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that...
متن کاملBiogenic gradients in algal density affect the emergent properties of spatially self-organized mussel beds.
Theoretical models highlight that spatially self-organized patterns can have important emergent effects on the functioning of ecosystems, for instance by increasing productivity and affecting the vulnerability to catastrophic shifts. However, most theoretical studies presume idealized homogeneous conditions, which are rarely met in real ecosystems. Using self-organized mussel beds as a case stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 322 5902 شماره
صفحات -
تاریخ انتشار 2008